
Final Report
December 12 2023

ENPH353

Kai Asaoka, Avery Wong

1



Table of Contents

1. Introduction
a. Background
b. Contributions
c. Software Architecture

2. Discussion
a. Driving and clue plate
b. Neural Networks

i. Data engine
ii. Data pre-processing
iii. Neural network architecture
iv. Training Parameters
v. Training and validation performance
vi. Error analysis

c. Robot Control Methods
i. Driving controller
ii. Collision detection
iii. Varying conditions

3. Conclusion
a. Robot Performance
b. Attempted Ideas
c. Reflection on ideas

4. References
5. Appendices

a. ChatGPT conversations

2



Introduction:

For our final project in ENPH 353, we were tasked to develop an algorithm to
program a robot in ROS to navigate around a course while reading signs to solve a
mystery. We were introduced to a variety of concepts surrounding machine learning
throughout the course to tackle this task, from traditional algorithms for image
recognition such as SIFT, to more complex methods using CNNs and Deep learning.
Using these concepts, we developed an algorithm capable of fully navigating the course
while collecting all clues along the way to achieve the maximum points possible.

Design Philosophy:

Before starting to program, we agreed upon key design elements early on to
maximize our efficiency. Our core ideas were as follows:

● Use either imitation learning or PID for navigation. We ultimately ended up
using PID in the interest of time for all sections of the course, as we found
success early on through experimentation. While this ended up being
successful, this can largely be attributed to the relative consistency of the
course, as well as the clarity in the road (which consisted of a singular
shade of gray). Imitation learning, or using machine learning here may
have been more beneficial in a more complex environment, but our PID
implementation ended up being efficient enough to be more than
serviceable for our application.

● Use a CNN for letter recognition. We saw this as the most straightforward
way of reading clues on the signs around the course, as we had
previously trained a neural network to do something similar: reading letters
on license plates. We also decided early on to take advantage of contours
instead of feeding images into our neural network to improve speed and
simplify training. More about this will be elaborated later in the report.

Partition of Work:
● Avery Wong: Designing clue reading architecture (data collection for sign

reading, training neural network for sign reading, implementation of clue
guessing algorithm), assisting with navigation.

3



● Kai Asaoka: Navigation (PID on road, grass, mountain, as well as
navigation for baby yoda section), pedestrian detection, truck detection,
assisting with data collection.

Software Architecture:

Our work primarily took place on our local devices in the ros_ws. Within this
workspace, we had the 2023_competition package which was given to us, and the
my_controller package, which we created ourselves. The my_controller package
contained 3 directors which we worked off of, being the launch folder, scripts folder, and
model folder. The launch folder contained the launch files for running the controller
scripts, the scripts folder contained the script that was run, and the model folder
contained the trained CNN for sign reading, as well as the training data that was used
for the model. The training data was collected, processed in collab, and then returned
as the model weights which were used by the controller scripts.

Discussion:

Driving and clue plate recognition modules
Our code was distinctly split into two modules: driving and clue recognition, which was
also how we distributed the workload between our two group members. These modules
were designed to be completely independent of each other, with the robot being able to
navigate completely independently of the clue plate recognition module, and vice versa.

4



Driving:
Navigation followed an algorithm described by the flowchart below:

Control:

The robot starts driving using its road-following PID algorithm. This algorithm first
filters out the gray of the road from a cropped captured image from the robot’s
frontal camera through binary masking. The image captured from the robot is
cropped to a thin ROI (region of interest) to prevent artifacts. This mask is then
traced over using contours, and the center of mass of all contours is taken.
Depending on how offset the center of mass is from the center of the robot’s
camera output, a move command to steer is published. The farther the center of
mass is from the center of the screen, the more the robot was told to turn.

5



The first iteration of this algorithm filtered for the white borders of the road
instead of the gray road itself. This was found to be too unstable under high
speed to be usable for the road section, but was adapted to work with the grassy
section. As the white lines on the ground are the only things that specify the
correct path in the grassy section, it was most logical to use these white lines and
navigate based on their position.

Some difficulties arose from filtering for these lines, as some patches of the grass
were found to be of a similar HSV value to the white lines on the road. This was
partially resolved by removing smaller than a certain size, however artifacts were
never able to be fully removed from the contour images in this section. Therefore,
precise tuning of both the threshold for removal of small contours and the
threshold for the binary mask were necessary, as well as tuning of steering
values to allow for correction if the robot failed to detect a stretch of white. The
speed of the robot was also decreased to allow for these corrections.

Pedestrian and Truck Detection:
Pedestrian detection was
designed to first only activate if a
red strip was found to be right in
front of the robot through taking a
thin ROI at the bottom of the

6



robot’s camera output. If red is detected, the robot stops as it knows it is in front
of the crosswalk, which is marked using red strips in the simulation. Once
stopped, the algorithm then shifts to scanning for a blue contour using binary
masking, which captures the pedestrian’s blue pants. Once the blue contour is at
the center of the screen, the robot becomes aware that the pedestrian had
freshly crossed the road and is on cooldown, and is therefore safe for the robot to
cross. The robot is then told to resume following the road, and the red scanning
algorithm is disabled as there are no longer any crosswalks to worry about.

Truck detection works though scanning for black
contours, representing the truck’s tires and
bumper. This algorithm is only set to be active
while road following is active, and functions
through scanning for black through contours and a
binary mask. Once the black contour becomes of
a particular size, the robot is told to pause on the
spot until the contour becomes smaller than the
threshold. This allows for the robot to stop once
the truck is in front of the robot at a certain
distance, and only resume when the truck has
gotten a certain distance away. This worked
relatively consistently, but as the clue signs also
contained some black adjustment of contour
threshold size was necessary to allow for proper
functioning.

Baby yoda detection was not
necessary due to our implementation
of tunnel tracking. This algorithm
functioned by turning towards the
tunnel immediately after a
brown-coloured area of a certain size
was detected, and sprinting towards
the center of mass of the contour. This
allowed us to immediately track
towards the tunnel at a sharp inner
angle in the baby yoda section, which
allowed us to ignore baby yoda
entirely. To get to the right side of the

7



tunnel, an offset was introduced for steering so that the center of mass was kept
on the left side of the robot at all times. While tracking the tunnel, the algorithm
would simultaneously scan for a red contour representing the car placed beside
the tunnel. Once the red car was visible to the robot’s camera via the red contour
becoming a certain size, the car would switch to tracking the red car instead to
better align itself with the tunnel. Once the red car became of a certain distance,
the robot would stop in place, and turn to the left until a blue contour,
representing the sign, became of a certain size. At this moment, as the robot is
now aware that it is located directly in front of the tunnel, it would engage a
second grass follow mode tuned specifically for the mountain, and begin tracking
through the tunnel and up the mountain.

As the robot climbs the mountain, it makes use of a specialized grass following
algorithm specifically tuned for the mountain surface. This algorithm differed from
the first grass following algorithm as it filtered for the two largest contours on the
screen instead of simply filtering out small contours. This was implemented as
streaks of white on the cliffside of the mountain would occasionally cause the
robot to hug and ride up the cliffside, getting it stuck. Making use of this
algorithm, the robot could successfully climb the mountain until it sees the final
sign. Once this blue contour became of a certain size, the robot would go straight
forward until the final sign was read.

Edge cases:
Edge cases were “handled” by leaving the robot to run off course, and tuning to prevent
it from happening further. Notable edge cases were the robot running off course in the
roundabout, running off course in the grass section, and running into the mountain face
in the mountain section. To prevent these, binary masks, contour thresholds, as well as

8



ROI were tweaked. It was found that once one upstream issue was fixed, many other
edge cases that would have otherwise been propagated down would be automatically
fixed as well, to the point where fixing the roundabout issue on the day of the
competition ended up suddenly leading to multiple perfect runs in a row. This makes
sense however, as small errors early on can easily propagate themselves into the rest of
the algorithm, leading to misalignment to the tunnel, running off the mountain, etc.

Clue plate recognition:

Overview:

For clue plate recognition, we started with being able to detect if there was a sign within
the robot’s field of view, by applying a blue mask, drawing contours on the masked
image, and then thresholding for a contour of a specific size. We then applied a
perspective transform on the detected sign, which gave a clean, cropped image of just
the contents of the sign.

With the cropped image, we found the contours on the sign and processed them by
removing overly large and small contours, removing inner contours, and sorting the
contours based on their y-position (separating into clue type or crime), and x-position
(rearranging letters to read from left to right). We then drew the contours onto a blank
image, which was what we used as the input into the CNN.

Data Engine:
From being able to gather letter contours from a sign, we collected data by

driving around manually, and publishing a ros message to the controller telling the
controller to record the contours of each letter in a list, and pickling the data to a file.
Because each sign had two words with multiple letters, it only took a few passes
through the entire course to have a dataset of around 1000 letter contours.

9



Data Processing:
Aside from the data processing of the image and contours outlined in the

overview, the only other changes we made to the dataset was shuffling the contents
before processing through the CNN to eliminate potential bias. It is notable that the
images we sent into the CNN were 100 x 100, and contained just the outlined contour,
which we felt kept only the minimal amount of data necessary, which may have led to
faster training times.

Neural Network Architecture:
Since we based our neural network off the

one used in lab 6, the network’s architecture ended
up being identical. We did not see any problems
with using those settings, and the speed was
reasonable, so we did not see any reason to
change the network’s settings. The only thing that
was changed was the input shape, as we were
using 100 x 100 images.

Training Parameters:
When collecting data for the CNN, we noticed certain
letters and numbers were either very uncommon, or
not present in the sign generation words. To account
for this, we did a couple of collections runs where we
changed the sign generation to show strings of letters
like “XXZZYYGGBB44”. This led to a more even
distribution for the training data set. The total data set
size was 993 letters, with a validation split of 0.2

Training and Validation:
The learning rate was kept at 0.0001, and we trained the model for
30 epochs, but was almost fully trained by the 15th epoch.

10



Error Analysis:
We created a confusion matrix for our training, and
noticed that there were issues with 0’s and O’s, and once
case of 8 and B being mixed up. We decided that these
rates were acceptable, and justified the 0’s and O’s being
bad camera placement when we took the photos
manually, as the 0’s or O’s would be distorted based on
the perspective transform

Conclusion

Summary
Our robot placed fourth during the competition. Our robot performed exactly how we
programmed it to, and managed to complete the full course as well as guess every clue
correctly, achieving maximum points. During our testing, we found that our robot
occasionally misread signs or deviated from the path, but was deemed reliable enough
for competition day.

Given a second chance, we would have liked to explore other means of navigation,
such as using neural networks or using imitation learning. We would have also liked to
experiment with other neural network settings, playing with ideas such as directly
inputting the contours into the network as opposed to images of the contours. We also
felt that we could have structured our code better, by using more files for better
modularity, creating more functions for repeated code, and documenting code better.

References:
● https://projectlab.engphys.ubc.ca/enph-353/
● https://chat.openai.com/

11



Appendix:
1. ChatGPT

a. Ideas for a general outline of sign detection

12



b. Specific ideas for processing the camera view and narrowing it down to just sign
contents.

13



c. Ideas for data collection

14



d. Ideas for improving masking

15



16


